Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic selleckchem cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum
(right Histone Methyltransferase inhibitor putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum.
These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. “
“A functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age-related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been tuclazepam relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age-related
differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso-lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto-parietal-occipital network as well as a negative network that spanned the default mode regions. These findings suggest that the memory process-invariant recruitment of brain regions within prefronto-parietal-occipital network increases with aging. Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks.