We speculate that one highly effective mechanism through which Treg cells limit neutrophil responses
is to reduce chemokine production perhaps by a variety of cells, including epithelial cells, macrophages (CXCL1 and CXCL2) and neutrophils (CXCL1). This finding expands upon previous observations showing that anergic regulatory T cells inhibit tissue invasion by T cells and granulocytes through chemokine metabolism.28 Similarly, Sarween et al.29 reported that CD4+ CD25+ Treg cells prevent tissue invasion by other T cells through effects on chemokine receptor and chemokine expression. The impact of Treg cells on inflammatory responses is not confined to B16FasL. Enhanced rejection of B16 cells observed after partial depletion of Treg cells is dependent X-396 concentration on innate immune responses Nivolumab in vitro and B16 tumours grow more rapidly in RAG−/− mice receiving CD4+ CD25+ cells compared with those receiving CD4+ CD25− cells. Full characterization of the early events following tumour cell inoculation in these mice is not possible because the inflammatory response, although biologically relevant, cannot be readily detected by immunohistochemistry. Hence, the B16FasL cell line serves a useful purpose as enhanced immunogenicity facilitates characterization of early events occurring after tumour cell inoculation. Other studies support a role for Treg cells in controlling neutrophil responses. Previous studies
of Helicobacter hepaticus-driven inflammatory responses in the gut indicated that adoptive transfer of Treg cells reduced neutrophil numbers in the spleen and lamina propria of chronically infected RAG−/− mice.30 There are many mechanisms involved in controlling immune responses in the skin. The ability of Treg cells to control the activity of CD8+ T-cell responses in the skin has been previously demonstrated.31,32 Our results show that Treg cells also control innate responses in the skin. These Treg cells may be activated by tissue damage or stimuli from melanoma cells and thereafter act
rapidly in an antigen non-specific fashion, to be able to control early innate immune activation. We found no detectable increase Cediranib (AZD2171) in the level of skin Treg cells after inoculation of tumour cells further supporting the premise that skin-resident Treg cells are rapidly mobilized, controlling innate immune activation without the need for expansion of recruitment of Treg cells into the skin. In line with the rapid manifestation of Treg-cell activity in the skin, previous reports indicate that the majority of skin Treg cells express CCR4 and high levels of CD103, a molecule implicated as a marker of effector memory Treg cells,33 suggesting that the Treg cells are ready to exert their effects early in an immune response. In addition, a recent report by Rubtsov et al.34 indicated that Treg cells, present at environmental surfaces like skin and gut, keep immune responses at these sites in check through the production of the immunosuppressive cytokine, IL-10.