However, this requires that the live plant collections, which are at the very core of the work of all botanic gardens, must be curated to the highest standards of sampling and record-keeping to make sure that the plants are ‘fit for purpose’ in research as well Selleck Sunitinib as in conservation (Maunder et al. 2001, Rae this issue). Failure to continuously keep up standards rapidly diminishes the scientific value of living collections and,
thus, results in the squandering of resources (e.g. Hällfors et al. this issue). Even traditional basic operative work should be and is being developed by gardens to save money and time and to provide better access to data held in collections (van den Wollenberg this issue;
Delmas et al. this issue). Gardens also need to assess their policies both in research and in collection development. Although botanic gardens are contributing to climate change related research, there is still room for re-directing research in order to make a stronger contribution to climate change mitigation and adaptation (Donaldson 2009; Primack and Miller-Rushing 2009; Ali and Trivedi this issue). An example of a new initiative in this direction is the study Neuffer et al. (this issue) have launched for botanic gardens to uncover plant responses to global change. The living plant collections and, increasingly, seed banks and cryopreserved tissue cultures maintained by botanic gardens, form a significant selleck compound ex situ reservoir of endangered plants. Screening the consolidated European Red List of plants, recently collated by BGCI, against BGCIs PlantSearch database of plants in cultivation in botanic gardens and the European Native Seed Conservation Network ENSCONETs database of plants conserved in European seed banks showed that 42% of European threatened species exist in
ex situ collections (Sharrock and Jones this issue). Even though this is short of the GSPC target 8, which called for 60% of threatened plant species to be conserved in ex situ collections by the end of 2010, it must be seen as quite a remarkable achievement given the often very limited resources at the disposal of most botanic gardens. Storing living Interleukin-3 receptor plant material in ex situ collections is not, however, a straightforward task. Innovative approaches to gain knowledge for proper ex situ protocols are needed, such as the use of GIS as reported by Krigas et al. (2010). An emerging challenge for collection policies and maintenance is that climate change may also threaten the endurance of the living plant collections (Monteiro-Henriques and Espírito-Santo this issue). This renders the aim of having collections of threatened plants preferably in the country of origin questionable (Target 8 of the GSPC; Convention on Biological Diversity 2010). Another example of a topic with a current need of revision is seed banking.